AI for Data Science: Artificial Intelligence Frameworks and Functionality

AI for Data Science: Artificial Intelligence Frameworks and Functionality
Advertisements

AI for Data Science: Artificial Intelligence Frameworks and Functionality

Download – PDF

Advertisements

Master the approaches and principles of Artificial Intelligence (AI) algorithms, and apply them to Data Science projects with Python and Julia code.

Aspiring and practicing Data Science and AI professionals, along with Python and Julia programmers, will practice numerous AI algorithms and develop a more holistic understanding of the field of AI, and will learn when to use each framework to tackle projects in our increasingly complex world.

The first two chapters introduce the field, with Chapter 1 surveying Deep Learning models and Chapter 2 providing an overview of algorithms beyond Deep Learning, including Optimization, Fuzzy Logic, and Artificial Creativity.

The next chapters focus on AI frameworks; they contain data and Python and Julia code in a provided Docker, so you can practice. Chapter 3 covers Apache’s MXNet, Chapter 4 covers TensorFlow, and Chapter 5 investigates Keras. After covering these Deep Learning frameworks, we explore a series of optimization frameworks, with Chapter 6 covering Particle Swarm Optimization (PSO), Chapter 7 on Genetic Algorithms (GAs), and Chapter 8 discussing Simulated Annealing (SA).

AI for Data Science: Artificial Intelligence Frameworks and Functionality

Download – PDF

Advertisements

Leave a Reply

Your email address will not be published. Required fields are marked *

Advertisements